a2 United States Patent

Garimella

US009400955B2

US 9,400,955 B2
Jul. 26, 2016

(10) Patent No.:
(45) Date of Patent:

(54) REDUCING DYNAMIC RANGE OF
LOW-RANK DECOMPOSITION MATRICES

(71) Applicant: Amazon Technologies, Inc., Reno, NV
(US)

(72) Inventor: SriVenkata Surya Siva Rama Krishna

Garimella, Seattle, WA (US)

(73) Assignee: Amazon Technologies, Inc., Seattle, WA
(US)

(*) Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35

U.S.C. 154(b) by 179 days.

(21) Appl. No.: 14/106,633

(22) Filed: Dec. 13, 2013
(65) Prior Publication Data
US 2015/0170020 A1l Jun. 18, 2015
(51) Imt.ClL
GO6F 15/18 (2006.01)
GO6N 3/08 (2006.01)
GO6N 99/00 (2010.01)
GIOL 15/16 (2006.01)
(52) US.CL
CPCcccee. GOG6N 3/082 (2013.01); GO6N 99/005

(2013.01); G10L 15/16 (2013.01)
(58) Field of Classification Search
None
See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS

5,546,503 A * 8/1996 Abe ... GO6K 9/6281
706/25

6,269,351 Bl 7/2001 Black
2002/0169735 Al* 11/2002 Kil ..o GO6F 17/30539

706/46

2004/0181499 Al
2008/0043873 Al

9/2004 Corban
2/2008 Ariyavisitakul

2012/0150532 Al* 6/2012 Mirowski GO6F 17/28
704/9
2013/0138436 Al 5/2013 Yuetal.
2014/0372112 A1l* 12/2014 Xue ...coovvviinnnnne GI10L 15/16
704/232
OTHER PUBLICATIONS

Xue, I, Li, I, & Gong, Y. (Aug. 2013). Restructuring of deep neural
network acoustic models with singular value decomposition. In
Interspeech (pp. 2365-2369).*

(Continued)

Primary Examiner — Stanley K Hill

Assistant Examiner — David H Kim

(74) Attorney, Agent, or Firm — Knobbe, Martens, Olson &
Bear, LLP

(57) ABSTRACT

Features are disclosed for reducing the dynamic range of an
approximated trained artificial neural network weight matrix
in an automatic speech recognition system. The weight
matrix may be approximated as two low-rank matrices using
a decomposition technique. This approximation technique
may insert an additional layer between the two original layers
connected by the weight matrix. The dynamic range of the
low-rank decomposition may be reduced by applying the
square root of singular values, combining them with both
low-rank matrices, and utilizing a random rotation matrix to
further compress the low-rank matrices. Reduction of
dynamic range may make fixed point scoring more effective
due to smaller quantization error, as well as make the neural
network system more favorable for retraining after approxi-
mating a neural network weight matrix. Features are also
disclosed for adjusting the learning rate during retraining to
account for the low-rank approximations.

28 Claims, 5 Drawing Sheets

US 9,400,955 B2
Page 2

(56) References Cited

OTHER PUBLICATIONS
Vanhoucke, Vincent, Andrew Senior, and Mark Z. Mao. “Improving

the speed of neural networks on CPUs.” Proc. Deep Learning and
Unsupervised Feature Learning NIPS Workshop. vol. 1. 2011.*

David Cohn, Les Atlas, and Richard Ladner. 1994. Improving Gen-
eralization with Active Learning. Mach. Learn. 15, 2 (May 1994),
201-221.*

International Search Report and Written Opinion in PCT Application
No. PCT/US2014/069485 dated Mar. 16, 2015.

* cited by examiner

US 9,400,955 B2

Sheet 1 of 5

Jul. 26, 2016

U.S. Patent

I ‘3L

<Q+

US 9,400,955 B2

Sheet 2 of 5

Jul. 26, 2016

U.S. Patent

JIAVI.INAINO N\

7 ‘81

80¢C

(X ¢— SIAON INdNI

911
(X —— YAV LLVIAIWITINI 917

1 H - 0TI

XNDIIVIWNOILVIOYH
HIAVT

ONISN 1INdWNOD (X ——
XDILVI OINVI-MOT H NAAATH @ATHL

w H YIAVINAAAIH

0cc XIALVIN NOLLYIOY X" nonas
DNISN d41IndwoDd 71z
XMLV INVI-MO'T %
1T XIAIVIN QUIHIL ey YAAVT
0z w NAQAIH IS¥YH [~
XRIIVIW ANODAS X
90c H 70T
SHLIAWVIVI NNA

00¢

~ ONILINISTIdTT

P0¢

XTIV IHOIIM

<0c

U.S. Patent

302

304

Jul. 26, 2016 Sheet 3 of 5

BEGIN MATRIX
APPROXIMATION PROCESS

|

APPLY SINGULAR VALUE

\ DECOMPOSITION TO APPROXIMATE

TRAINED DNN MATRIX WITH
CORRESPONDING BIAS VECTOR

306

SELECT THE R LARGEST VALUELS
FROM THE DECOMPOSED MATRIX
TO OBTAIN TWO LOW-RANK
MATRICES

308

TRANSFORM THE LOW-RANK
MATRICES USING A ROTATION
MATRIX TO REDUCE THE DYNAMIC

RANGE OF THE LOW-RANK MATRICES

|

312 ADD THE BIAS VECTOR BACKTO A LAYER
“—"~ AFTER MULTIPLYING THE LAYER BY THE

TWO LOW-RANK MATRICES

Fig. 3

US 9,400,955 B2

300

U.S. Patent

406

408

4%_/‘\ INTERMEDIATE LINEAR

Jul. 26, 2016 Sheet 4 of 5

402

BEGIN RETRAINING
PROCESS

INTRODUCE AN

LOW-RANKED LAYER

ESTIMATE THE AVERAGE VARIANCE
PER NODE AT THE OUTPUT OF THE
INTERMEDIATE HIDDEN LAYER

ADJUST THE LEARNING RATE OF
THE FOLLOWING LAYER USING
THIS PARTICULAR AVERAGE
VARIANCE

413/{ END PROCESS)

Fig. 4

US 9,400,955 B2

400

US 9,400,955 B2

Sheet 5 of 5

Jul. 26, 2016

U.S. Patent

S 51

NOILVOITddV
805

0Ls

TN
_

\\
L
~—
\

N

NIOMIAN

~
N,

J
—

Vs
e

JAOIS VIvVd

ﬂcaw

IVIN -

A J

)

XIDIIVIN 40
NOLLYWWIXOUddV
INVI-MOT
HIIM
MIOMIAN
TVININ

(IOMIIN)

I S 0%S
IDIAIA INITTD
0%

LA N
4% ffw,\ ﬁ) —
0cs i&:iﬁg

US 9,400,955 B2

1
REDUCING DYNAMIC RANGE OF
LOW-RANK DECOMPOSITION MATRICES

BACKGROUND

Computing devices can be used to process a user’s spoken
commands, requests, and other utterances into written tran-
scriptions. Models representing data relationships and pat-
terns, such as functions, algorithms, systems, and the like,
may accept audio input (sometimes referred to as an input
vector), and produce output (sometimes referred to as an
output vector) that corresponds to the input in some way. In
some implementations, a model is used to generate a likeli-
hood or set of likelihoods that the input corresponds to a
particular value. For example, an automatic speech recogni-
tion (“ASR”) module may utilize various models to recognize
speech, such as an acoustic model and a language model. The
acoustic model is used on features of audio data to generate
hypotheses regarding which words or subword units (e.g.,
phonemes) correspond to an utterance captured in the audio
data. The language model is used to determine which of the
hypotheses generated using the acoustic model is the most
likely transcript of the utterance.

ASR modules commonly utilize Gaussian mixture models/
hidden Markov models (“GMM/EIMM”) for vocabulary
tasks. However, artificial neural networks (“NN”), including
deep neural networks, may also be used. Acoustic scores in
NN-based ASR modules are obtained by doing an NN for-
ward pass. The forward pass involves multiplying large
trained NN weight matrices, representing the parameters of
the model, with vectors corresponding to feature vectors or
hidden representations. The output can be used to determine
which subword unit (e.g., phoneme, phoneme portion, or
triphone) is most likely to correspond to the input feature
vector.

The parameters of an acoustic model can be set in a process
referred to as training. An acoustic model can be trained using
training data that includes input data and the correct or pre-
ferred output of the model for the corresponding input data.
The model can be used to process the input data, and the
parameters of the model can be modified until the model
produces (or “converges” on) the correct or preferred output.

BRIEF DESCRIPTION OF DRAWINGS

Embodiments of various inventive features will now be
described with reference to the following drawings. Through-
out the drawings, reference numbers may be re-used to indi-
cate correspondence between referenced elements. The draw-
ings are provided to illustrate example embodiments
described herein and are not intended to limit the scope of the
disclosure.

FIG. 1 is a block diagram of an illustrative neural network
containing several non-linear hidden layers and a decom-
posed matrix.

FIG. 2 is a block diagram of an illustrative process for
obtaining acoustic scores in a neural network by doing a
forward pass.

FIG. 3 is a flow diagram of an illustrative process for
approximating a trained neural network matrix to speed up
execution of a forward pass while keeping the dynamic range
of the low-rank approximations small.

FIG. 4 is a flow diagram of an illustrative process for
adjusting the learning rate of an approximated neural network
matrix in order to recover from word error rate degradation.

FIG. 5 is a block diagram of an illustrative networked
environment containing a spoken language processing sys-

25

35

40

45

55

2

tem, showing illustrative interactions between a neural net-
work-based automatic speech recognition module, a natural
language understanding module, and a data store during pro-
cessing of an utterance.

DETAILED DESCRIPTION
Introduction

The present disclosure is directed to improving the speed of
neural network-based automatic speech recognition while
maintaining a satisfactory level of accuracy. Methods of train-
ing the improved neural networks are also disclosed. Gener-
ally described, an automatic speech recognition (“ASR”) pro-
cess may be implemented by a number of processing modules
or components that obtain audio data input regarding an utter-
ance and generate a sequence of recognized words, e.g. a
transcription, as output. Some ASR systems may use an arti-
ficial neural network, also referred to herein as a neural net-
work for convenience, as an acoustic model. A neural network
is a network containing at least one computational unit, also
known as a neuron or node, interconnected to other compu-
tational units. Conceptually, the nodes may be thought of as
calculating the output values as a function of a plurality of
different input values. Typically, neural networks have mul-
tiple (e.g., two or more) layers of nodes, and nodes of adjacent
layers may be connected to each other. Each connection
between the various nodes of adjacent layers may be associ-
ated with a respective weight. When processing audio data
input in the form of a vector (e.g., one or more feature vectors
containing information extracted from portions of the audio
data), aneural network may first multiply each input vector by
a matrix representing the weights associated with connec-
tions between the input layer and a subsequent layer.

A neural network, including, for example, a deep neural
network, utilized in an ASR module may contain several
layers, including an input layer, an output layer, and several
non-linear hidden layers. In speech recognition, the input
stage may consist of a set of parameters (e.g., a feature vector)
for a given input frame along with parameters for frames
preceding and following the input frame. Acoustic scores
may be obtained by doing a forward pass. The forward pass
involves multiplying large matrices representing the connec-
tion weights between nodes of adjacent layers by vectors
corresponding to one or more feature vectors (from the input
layer) or hidden representations (from the subsequent hidden
layers). In some cases, hidden layers and/or the output layer
may include thousands of nodes. Matrices representing
weights connecting such layers can get quite large (e.g., a
matrix of size 3,000x1,000 has 3,000,000 values). Due to
these large matrices, the acoustic scoring process can be
time-consuming and resource intensive. Approximation of
these large matrices reduces the number of multiplications
and hence may speed up the forward pass.

Aspects of the present disclosure are directed to the cre-
ation of low-rank approximations of neural network weight
matrices using singular value decomposition, and, more spe-
cifically, to the transformation of these low-rank matrices by
using a rotation matrix to reduce their dynamic range. The
low-rank approximation reduces the number of multiplica-
tions and may therefore significantly speed up the neural
network forward pass. For example, a matrix representing
connection weights between two layers each having 1,000
nodes will have 1,000,000 weights (a matrix of size 1000x
1000). The neural network will multiply such matrices by a
vector (e.g., the input vector or some hidden representation)
of'an appropriate size (e.g., a 1,000-dimensional vector in this

US 9,400,955 B2

3

case) in a process involving a large number of individual
multiplications. By replacing the large matrix with a low-rank
approximation consisting of two low-rank matrices, the num-
ber ofindividual multiplications may be reduced accordingly.
This approximation technique may insert an additional layer
between the two original layers. The first low-rank matrix of
the low-rank approximation represents the weights between
the original first layer and the additional layer and the second
low-rank matrix represents the weights between the addi-
tional layer and the original second layer. If the low-rank
approximation is factored into two component matrices, a
rotation matrix may be used to reduce the dynamic range of
the low-rank matrix values. Reducing the dynamic range of
the low-rank matrices can provide several benefits, including
more effective quantization of values due to a small quanti-
zation error. Additional benefits include facilitation of more
efficient training. One training technique known as back
propagation is typically slow to converge when there is a
larger dynamic range.

Additional aspects of the present disclosure relate to
retraining the neural network after one or more of the matrices
have been replaced by the low rank approximations described
above and in greater detail below. The low-rank approxima-
tion of the neural network matrix may, in some cases, increase
the word error rate (“WER”) of the resultant neural network.
This WER degradation may be recovered by retraining the
approximated neural network model. In some embodiments,
retraining may make the approximated model even more
accurate than it was prior to replacing a matrix with the low
rank approximation. The learning rate may be adjusted during
the retraining procedure in order to accommodate low-rank
linear approximations. These approximation and retraining
techniques may be applied to any stage of the neural network,
but may produce the greatest results when applied to the final
hidden layer as it may involve the largest neural network
matrix. These techniques may be used, for example, in the
training of an acoustic model, but are not limited to such. In
some embodiments, the techniques may be used to improve
training of any neural-network based model.

With reference to an illustrative embodiment, a neural net-
work may include a trained NN matrix, W,,..,.. The trained
matrix may be approximated using the product of two low-
rank matrices. This approximation introduces into the neural
network an additional layer of smaller size while reducing the
total number of parameters in the matrix. These two low-rank
matrices are obtained by first using singular value decompo-
sition (“SVD”)on W, . e.g.,

v, 2. v I

mxn=nxn" nxn

W,

mxn

Ry
where U is an mxn real unitary matrix, 2 is an nxn rectangular
diagonal matrix with nonnegative real entries on the diagonal,
and V7 the transpose of V. The matrix W, may be further
simplified by taking the r largest values from 2, where r is less
than or equal to m or n. The matrix may then be approximated
as the least squares approximation of W, with the singular
value decomposition rewritten as the product of low-rank
matrices,

=0, s V™ 2]

(AN AN e M A [3]

These low-rank matrices may be further transformed by
inserting a rotation matrix. This rotation matrix, R, where
RR7 is equal to an identity matrix, may reduce the dynamic
range of the matrix by compressing the minimum and maxi-
mum values of the low-rank approximations. Such a reduc-
tion may be desirable for several reasons. First, reducing the

10

15

20

25

30

35

40

45

50

55

60

65

4

dynamic range of the matrix may aid in retraining the neural
network after this approximation. Otherwise, if the dynamic
range is large, the back propagation training will be slow to
converge. Secondly, it may be useful when applying subse-
quent fixed-point scoring or fixed-point approximations.

The trained NN matrix, W,,,. .., may have some correspond-
ing bias vector b, to be accounted for. The approximation
of'the NN matrix as the product of two low-rank matrices may
be viewed as adding a layer to the NN system. For example,
assume the system is moving from the input layer to the first
hidden layer. Since W may now be approximated as the
product of two low-rank matrices, the bias vector may not be
applied to the matrices until the system reaches the first hid-
den layer in order to maintain the proper equivalency.

The original trained NN matrix may only have non-linear
sigmoid hidden layers, which forces the dynamic range of all
hidden outputs to be between some predetermined range,
such as (0, 1). However, the above approximation introduces
an intermediate hidden layer, linear in nature, where the
dynamic range of the output is no longer restricted to be
between (0, 1) and may instead be higher or lower. Further,
the approximated NN model may need to be retrained in order
to recover from WER degradation. As described above, the
reduced dynamic range of the low-rank matrices can improve
the speed of training using back propagation.

One method of training models may use stochastic gradi-
ents. In stochastic gradient training, a modification to each
parameter of a model may be based on the error in the output
produced by the model. A derivative, or “gradient,” can be
computed that corresponds to the direction in which each
individual parameter of the model is to be adjusted in order to
improve the model output (e.g., to produce output that is
closerto the correct or preferred output for a given input). The
average variance per node at the output of the intermediate
hidden linear layer may be estimated by assuming a fixed
variance at each previous non-linear hidden output. While the
system may have different learning rates (corresponding to
the amount by which the parameters are to be adjusted during
each individual adjustment) for different stages of training,
the same learning rate may often be applied to all stages for
simplicity and to limit the number of parameters needed. The
learning rate of the non-linear layer following the intermedi-
ate hidden layer may be adjusted so that the dynamic range of
the resultant gradient matches that of the original NN system
in order to account for the linear layer.

Although the examples and embodiments described herein
will focus, for the purpose of illustration, on approximating
NN weight matrices for use in automatic speech recognition,
one skilled in the art will appreciate that the techniques
described herein may be applied to other processes, methods,
or systems. For example, the techniques may be used with any
type of neural network, for NNs used for purposes other than
automatic speech recognition, etc. Various aspects of the dis-
closure will now be described with regard to certain examples
and embodiments, which are intended to illustrate but not
limit the disclosure.

Sample Neural Network with Decomposed Matrix

FIG. 1 depicts an illustrative deep neural network 100
containing several non-linear hidden layers 110. An NN 100
contains an input layer 104 that corresponds to a set of input
vectors or feature vectors. The input layer 104 may consist of
a set of parameters for a given acoustic frame, as well as for
parameters of frames preceding and following the input
frame. These input vectors are processed using the NN 100
and are output transformed as output vectors. The output layer
116 may consist of a set of nodes 106, each associated with a
respective word or subword unit (e.g., phoneme, phoneme

US 9,400,955 B2

5

portion, triphone, etc.). The output indicates which subword
likely corresponds to the input. The output layer may be linear
or non-linear.

In one specific, non-limiting example, the input layer may
contain one hundred eighty nodes or neurons 106, while the
output layer may contain three thousand nodes. Between the
input and output layers are several hidden non-linear layers
110. Though the number of non-linear hidden layers 110 may
be any number, typically in speech recognition the number of
hidden layers may vary between three and seven. In addition,
each layer may consist of a few thousand units. As a result, an
NN model may have many more parameters (e.g., two to ten
times more parameters) than a traditional GMM/HMM
model.

Certain hidden layers 110 are connected to the adjacent
input or output layers 104, 116. Each node 106 may be con-
nected to a node 106 in the following layer by some weighted
connection 108. The weighted connections 108 between the
layers may be described by the weight matrices in the NN-
based ASR system. These weight matrices may be necessary
to process information through the ASR system. Since each
node may correspond to a node in the next layer, the NN may
require a great number of calculations to process information.

In an NN-based ASR system, the lower layers of NN may
be shared across all units in the output layer. The lower layers
may need to be calculated even though only a small amount of
states are active during search. Therefore, it may be necessary
to reduce the NN model size by approximating the weight
matrices in order to obtain fast computation and lessen
memory usage.

Layer 114 represents an intermediate linear layer that
replaces a large weight matrix in the NN when decomposing
the large matrix into two low-rank matrices. This decompo-
sition introduces into the neural network an additional layer
of smaller size while reducing the number of parameters in
the matrix. As a result, the large matrix representing weights
corresponding to connections between output layer 116 and
the adjacent (e.g., immediately preceding) hidden layer 100
have been replaced by two weight matrices. One of the new
low-rank matrices corresponds to the connections between
the last hidden layer 110 and the intermediate layer 114 (e.g.,
connection 118), and the second low-rank matrix corresponds
to the weights between the intermediate layer and the output
layer 116 (e.g., connection 120). This approximation may be
performed at any stage of the NN. It may be most desirable to
perform this weight matrix approximation directly before the
output layer 116, however, because that weight matrix may be
the largest. Advantageously, the two low-rank matrices may
be calculated using a rotation matrix that reduces the dynamic
range of the low-rank matrices.

Weight Matrix Approximation

FIG. 2 depicts an illustrative forward pass 200 through an
NN 100. This illustration depicts an NN 100 with an input
layer 104, an output layer 116, and three hidden layers 110,
but one skilled in the art will appreciate that the techniques
described herein are not limited to this number of layers or the
illustrative layer sizes.

The process begins at block 202. The input layer 104 is
represented by a series of nodes 106. For example, the num-
ber of nodes 106 in the input layer 104 may be one hundred
eighty. The first hidden layer 208 may contain, for example,
one thousand nodes 106. In order to move to the first hidden
layer, the NN weight matrix 204 can be multiplied by the
input layer 104. For example, the NN weighted matrix 204
may be a 1000x180 matrix, multiplied by the input layer 104.
This can result in the first hidden layer 208, which may be
represented by a 1000-dimension vector (or 1000x1 matrix)

10

15

20

25

30

35

40

45

50

55

60

65

6

corresponding to the one thousand nodes 106. In some
embodiments, a sigmoid non-linearity function may be
applied to scale the values of the vector between some pre-
determined range (e.g., 0-1). Such non-linearity may also be
applied for some or all of the subsequent hidden layers.

To move from the first hidden layer 208 to the second
hidden layer 212, the connections between the layers 208 and
212 may be represented by a 1000x1000 matrix 206. The
weight matrix 206 may be multiplied by the first hidden layer
208, producing the second hidden layer 212. The second
hidden layer may, for example, be represented by a 1000-
dimension vector (or 1000x1 matrix).

The process may be similarly repeated in order to move
from the second hidden layer 212 to the third hidden layer
216. The weight matrix 210 may be multiplied by the second
hidden layer 212 to produce the third hidden layer 216. For
example, connections between the layers 212 and 216 may be
represented by a 1000x1000 matrix 210 and the third hidden
layer may again be represented by a 1000-dimension vector
(or 1000x1 matrix).

To produce the final output layer 116, the low-rank matri-
ces 214 and 218, computed using rotation matrices as
described in greater detail below, may be used. Illustratively,
a first low-rank matrix 214 may be multiplied by the third
hidden layer 216 to produce an intermediate hidden layer 218.
The intermediate hidden layer 218 may then be multiplied by
a second low-rank matrix 220 to produce the output layer.
Each of the low-rank matrices may be substantially smaller
than the matrix that would normally be used to produce the
output layer from the last hidden layer. For example, a
weighted matrix used to produce a 3000-dimension vector
from a 1000 node hidden layer may be represented by a
3000x1000 matrix. This produces an output layer 116 of three
thousand nodes. In contrast, a first low-rank matrix of size
180x1000 and a second low-rank matrix of size 3000x180
may be used, thereby substantially reducing the number of
multiplications to be computed (e.g., 720,000 vs. 3,000,000).
The process ends at block 222.

With reference now to FIG. 3, an illustrative process 300
for approximating a trained NN weight matrix, W,,,,,, where
m is greater than n, may be described. Approximating a
trained NN weight matrix as the product of two low-rank
matrices may be viewed as adding in another constraint or
hidden layer to the NN system 100, though one of smaller
size. The process begins at block 302. The process may be
embodied in a set of executable program instructions stored
on a computer-readable medium, such as one or more disk
drives, of a computer system. When the process 300 is initi-
ated, the executable program instructions can be loaded into
memory, such as RAM, and executed by one or more proces-
sors of the computer system.

A trained NN matrix with a corresponding bias vector may
be approximated in order to reduce the number of multipli-
cations involved in processing an NN forward pass to achieve
an acoustic score. The trained NN matrix may be approxi-
mated at block 304 utilizing a singular value decomposition
technique.

In this technique, the trained NN matrix may be decom-
posed into lower-dimensional matrices as demonstrated
below.

US 9,400,955 B2

7
-continued
&1 0 0
: Vil e Vi
0 ... &n 0 \ oo]
. Vil R
0 ... 0 Enn

Wi = UnenZosen Vi

By applying singular value decomposition, W, ., may be
rewritten as shown. In the above decomposition, first compo-
nent matrix U, may be a unitary matrix, second component
matrix X, may be a diagonal matrix with positive values
greater than or equal to zero, and third component matrix V7
may be the transpose of V, a unitary matrix. The m columns of
U and the n columns of V may be called the left-singular
vectors and the right-singular vectors of W, respectively.
Since W may be a sparse matrix, a large part of W’s singular
values may be very small.

Atblock 306, the r largest values may be selected from the
now decomposed NN matrix. When selecting r, r may be the
low-rank of the resultant least squares approximation, W, .
For example, rmay be set as 128, leaving only the 128 highest
values in 2. All smaller values may be set to 0 without sig-
nificantly changing the values of elements in the trained NN
matrix. Thus, U and V¥ may also be approximated. In V%, only
the first r rows may be selected for the resultant least squares
approximation. For example, if m is 1,000, n is 3,000, and r is
selected to be 128, only 128 rows of VZ, e.g., a portion of V7,
can be selected. Further, since X has only positive entries, the
square root of £ may be taken. The equation may then be
rewritten as

W= U2 Vs [2]

LA VAN IR I 3]
This can be further rewritten at block 308 as

W = Crss e R) Rooiy Zos W) 7,

where 3, represents a diagonal rxr matrix with r largest
values from 2, U, represents the corresponding columns
of U and V, 7 represents the corresponding rows of
Vs - Thus, 0. may represent a portion of matrix U

2, may represent a portion of matrix

234

mxns

ow and VT may
represent a portion of V., Z. By keeping the singular values
proportional to the total in each layer, NN model size may be
significantly reduced. More aggressive model compression
may cause a greater drop in word accuracy.

Further, R, may be a rotation, e.g., unitary, matrix. In
some cases, R may be a randomly generated matrix. By
approximating the original trained NN matrix using a rotation
matrix, the dynamic range of the low-rank matrices A, ,, 220
and B,,.., 214 in equations [8], [9] and [10] below may be
reduced. A, ,, 220 may represent the right parenthetical of the
above approximation,

A= R 2,

12 IN/,X,,T)

8]
and B,,,., 214 may represent the left parenthetical,

Broe=(CrZir R)

[91.
The rank of low-rank matrix A, , 220 and the rank of low-
rank matrix B,,.., 214 may be less than the rank of the original
matrix W. W was originally, for example, a 3000x 1000 matrix
and may now be approximated as the product of a 3000x128

matrix and a 128x1000 matrix, both of which are rank r.

10

20

35

40

45

50

60

8

The original NN affine component may be approximated as
the product of two affine components, where 0,,, represents a
vector of zeros,

U i B 7B s B] [A i 011

The bias vector b,,,..,, may then be added back to a layer after
multiplying the layer by the two low-rank matrices as shown
atblock 312. The bias vector may be thought of as a parameter
of'the NN system when the corresponding input is always 1,
and may act as a correction factor. By refraining from adding
the bias vector corresponding to the original NN weight
matrix M until after the two low-rank matrices have been
multiplied by a given layer, the bias vector may remain an
accurate correction factor. The process ends at block 314.

Before process 300, the matrix-vector product using W ...,
may require mn multiplications for each frame. The number
of multiplications after utilizing the above low-rank approxi-
mation may instead be (m+n)r. As a result, the model size of
the NN-based system may be significantly reduced if r is
much smaller than n. The smaller the r value, the more effi-
cient forward pass computations may be. This matrix
approximation may be applied to any stage of the NN forward
pass. However, when the output layer includes the largest
number of nodes, the final hidden layer may be preferable as
the greatest gains in speed may be achieved from approxi-
mating the largest NN weight matrix.

In some embodiments, limiting the dynamic range of a
trained NN weight matrix may help in retraining the NN after
this approximation. For example, back propagation is a
method for training the neural network parameters, e.g.,
weight matrices, in a feed-forward neural network, such as
the neural networks described above. The weights are adapted
to a calculated error in the presence of certain inputs. The
method is then applied backward from the final output layer
through the hidden layers to the input layer. Reducing the
dynamic range may help in training an NN because the larger
the dynamic range, the slower the convergence in back propa-
gation training. Reducing the dynamic range may also make
quantization smaller.

In some embodiments, reduction of the dynamic range of a
trained NN weight matrix may also improve fixed point scor-
ing or fixed point approximation. This reduction may improve
fixed point scoring as during forward pass, the approximation
error due to fixed point scoring may be small. In addition, use
of fixed point scoring may be preferable as it may be faster
than standard floating point multiplications.

Learning Rate Adjustment of a Low-Rank Matrix Decompo-
sition

As described above, the hidden layers of some neural net-
works may only be non-linear sigmoid hidden layers. These
sigmoid layers may force the dynamic range of all hidden
outputs to be between (0, 1). However, approximating an NN
weight matrix representing connection weights between two
such layers (or between a hidden layer and, e.g., the output
layer) may introduce an intermediate linear hidden layer 218
into the ASR system. This intermediate linear hidden layer
218 may be linear (e.g., it may not have a dynamic range
restricted to (0, 1)).

In order to compensate for this newly introduced linear
hidden layer, the learning rate may be adjusted during the
retraining of the modified NN model. Retraining the NN
model may be necessary to regain model accuracy after
approximation. FIG. 4 depicts an illustrative process 400 for
adjusting the learning rate during retraining.

The process begins at block 402. The process 400 may be
embodied in a set of executable program instructions stored
on a computer-readable medium, such as one or more disk

[10].

US 9,400,955 B2

9

drives, of a computer system. When the process 400 is initi-
ated, the executable program instructions can be loaded into
memory, such as RAM, and executed by one or more proces-
sors of the computing system.

Block 404 details the introduction of an intermediate linear
layer 218, e.g., through approximating an NN weight matrix
utilizing singular value decomposition as described in greater
detail above. The original NN system may have one layer
represented by a non-linear function, e.g., the parameters of
the layer, and a corresponding weight matrix, W. By approxi-
mating the weight matrix, an intermediate layer 218 may be
introduced wherein the layer is connected to the preceding
layer by matrix B, and the following layer by matrix A.

In some embodiments, one may estimate the average vari-
ance per node at the output of this intermediate layer 218 as
shown in block 406. This estimation assumes a constant vari-
ance for any non-linear node. This estimation may be made by
assuming a fixed variance at each previous non-linear hidden
output. The learning rate for each stage may differ, but the
same learning rate may apply to each stage for each compo-
nent for the sake of simplicity and to limit the number of
necessary parameters.

The learning rate of the layer following the intermediate
linear low-rank layer 218 may be adjusted at block 408. The
learning rate may be adjusted to account for the changed
average overall variance at the output of the intermediate
hidden layer, as the output of the intermediate hidden layer
may be included in the overall grading of the system. The
typical learning rate for an NN system may be represented by
.- In order to match the dynamic range, the learning rate oz
of [B,,,..,/b,,.;] component may be set to

mxr

trace(A ., AL,) (1]

ozB:ozw/ B E—

where o represents the learning rate of the original NN
component [W, . Ib,_.]. The learning rate o, of [A,,,,,10,..,]
component may be calculated by assuming a back-propa-
gated error vector at any non-linear hidden layer to have a
fixed variance in each dimension and may be set to

wace(BL, Byusr)
@ = Ozw/ f .

The result of adjusting the learning rate at block 408 is that
the dynamic range of the resultant stochastic gradient
matches that of the original NN system. This adjustment may
be effective when retraining the approximated NN model
described above. Training the approximated NN model may
allow the system to recover from WER degradation. The
retrained approximated NN model may actually improve its
WER over the original NN system. The process ends at block
412.

Sample Environment for Implementing a Neural Network-
based ASR module

FIG. 5 illustrates an example environment in which a
trained neural network using low-rank approximations for
one or more weight matrices may be implemented. It depicts
a spoken language processing system 500 and a client device
530. The spoken language processing system 500 can be a
network-accessible system in communication with the client
device 530 via a communication network 540, such as a
cellular telephone network or the internet. A user 520 may use

2]

20

30

35

40

45

10

the client device 530 to submit utterances, receive informa-
tion, and initiate various processes, either on the client device
530 or at the spoken language processing system 500. For
example, the user 520 can issue spoken commands to the
client device 530 in order to get directions or listen to music,
as described above.

The client device 530 can correspond to a wide variety of
electronic devices. In some embodiments, the client device
530 may be a mobile device that includes one or more pro-
cessors and a memory which may contain software applica-
tions executed by the processors. The client device 530 may
include a speaker or other audio output component for pre-
senting or facilitating presentation of audio content. In addi-
tion, the client device 530 may contain a microphone or other
audio component for accepting speech input on which to
perform speech recognition. [lustratively, the client device
530 may include any computing devices such as wireless
mobile devices (e.g. smart phones, PDAs, tablets, or the like),
desktops, laptops, media player, video game platforms, elec-
tronic book readers, television set-top boxes, televisions (e.g.,
internet TVs), and computerized appliances, to name a few.
The software of the client device 530 may include compo-
nents for establishing communications over wireless commu-
nication networks or directly with other computing devices.

The spoken language processing system 500 can be any
computing system that is configured to communicate via a
communication network. For example, the spoken language
processing system 500 may include any number of server
computing devices, desktop computing devices, mainframe
computers, and the like. In some embodiments, the spoken
language processing system 500 can include several devices
physically or logically grouped together, such as an applica-
tion server computer device configured to perform speech
recognition on an utterance and a database server computing
device configured to store records and speech recognition
models.

The spoken language processing system 500 can include
an ASR module 502, an NLU module 504, data store 506, and
one or more applications 508. In some embodiments, the
spoken language processing system 500 can include various
modules and components combined on a single device, mul-
tiple instances of a single module or component, etc. For
example, the spoken language processing system 500 may
include a separate database server that may be configured
with a data store 506; a server or group of servers configured
with both ASR and NLU modules 502, 504; and a server or
group of servers configured with applications 508. In multi-
device implementations, the various devices of the spoken
language processing system 500 may communicate via an
internal communication network 510, such as a corporate or
university network configured as a local area network
(“LAN”) ora wide area network (“WAN”). In some cases, the
devices of the spoken language processing system 500 may
communicate over an external network, such as the Internet,
or a combination of internal and external networks.

In some embodiments, the features and services provided
by the spoken language processing system 500 may be imple-
mented as web services consumable via a communication
network 540. In further embodiments, the spoken language
processing system 500 is provided by one or more virtual
machines implemented in a hosted computing environment.
The hosted computing environment may include one or more
rapidly provisioned and released computing resources, which
computing resources may include computing, networking
and/or storage devices. A hosted computing environment
may also be referred to as a cloud computing environment.

US 9,400,955 B2

11

The network 540 may be a publicly accessible network of
linked networks, possibly operated by various distinct parties,
such as the Internet. In other embodiments, the network 540
may include a private network, personal area network
(“PAN”), LAN, WAN, cable network, satellite network, etc.
or some combination thereof, each with access to and/or from
the Internet. For example, the devices of the spoken language
processing system 500 may be located within a single data
center, and may communicate via a private network as
described above. The client device 530 may communicate
with the spoken language processing system 500 via the
Internet. The client device 530 may have access to the Internet
via a wired or WiFi connection, or via a cellular telephone
network (e.g., a Long Term Evolution or LTE network).

The spoken language processing system 500 illustrated in
FIG. 5 includes an ASR module 502 to process the utterance
and transcribe what the user said. The ASR module 502 can
output one or more likely transcriptions. For example, the
ASR module 502 may output a lattice or N-best list of likely
transcriptions. In some embodiments, the lattice or N-best list
may include scores indicating a confidence in each transcrip-
tion or portion thereof. The ASR module may include a neural
network 100, such as a NN with low-rank approximations for
a particular matrix. The spoken language processing system
500 may use an NLU module 504 to determine the user intent
based on the output from the ASR module 502.

Various applications, such as the application 508 of FIG. 5,
can use the output of the NLLU module 504 to respond to user
utterances or take actions in response to user utterances.
Separate applications 508 may be implemented within the
spoken language processing system 500 to perform different
tasks. For example, the spoken language processing system
500 may include separate applications 508 for playing music,
providing directions, performing searches, purchasing prod-
ucts, providing personal information management (e.g., cal-
endars or contacts) and the like.

Terminology

Depending on the embodiment, certain acts, events, or
functions of any of the processes or algorithms described
herein can be performed in a different sequence, can be
added, merged, or left out altogether (e.g., not all described
operations or events are necessary for the practice of the
algorithm). Moreover, in certain embodiments, operations or
events can be performed concurrently, e.g., through multi-
threaded processing, interrupt processing, or multiple proces-
sors or processor cores or on other parallel architectures,
rather than sequentially.

The various illustrative logical blocks, modules, routines,
and algorithm steps described in connection with the embodi-
ments disclosed herein can be implemented as electronic
hardware, computer software, or combinations of both. To
clearly illustrate this interchangeability of hardware and soft-
ware, various illustrative components, blocks, modules, and
steps have been described above generally in terms of their
functionality. Whether such functionality is implemented as
hardware or software depends upon the particular application
and design constraints imposed on the overall system. The
described functionality can be implemented in varying ways
for each particular application, but such implementation deci-
sions should not be interpreted as causing a departure from
the scope of the disclosure.

Moreover, the various illustrative logical blocks and mod-
ules described in connection with the embodiments disclosed
herein can be implemented or performed by a machine, such
as a general purpose processor device, a digital signal proces-
sor (DSP), an application specific integrated circuit (ASIC), a
field programmable gate array (FPGA) or other program-

40

45

12

mable logic device, discrete gate or transistor logic, discrete
hardware components, or any combination thereof designed
to perform the functions described herein. A general purpose
processor device can be a microprocessor, but in the alterna-
tive, the processor device can be a controller, microcontroller,
or state machine, combinations of the same, or the like. A
processor device can include electrical circuitry configured to
process computer-executable instructions. In another
embodiment, a processor device includes an FPGA or other
programmable device that performs logic operations without
processing computer-executable instructions. A processor
device can also be implemented as a combination of comput-
ing devices, e.g., a combination of a DSP and a microproces-
sor, a plurality of microprocessors, one or more microproces-
sors in conjunction with a DSP core, or any other such
configuration. Although described herein primarily with
respect to digital technology, a processor device may also
include primarily analog components. For example, some or
all of the signal processing algorithms described herein may
be implemented in analog circuitry or mixed analog and
digital circuitry. A computing environment can include any
type of computer system, including, but not limited to, a
computer system based on a microprocessor, a mainframe
computer, a digital signal processor, a portable computing
device, a device controller, or a computational engine within
an appliance, to name a few.

The elements of a method, process, routine, or algorithm
described in connection with the embodiments disclosed
herein can be embodied directly in hardware, in a software
module executed by a processor device, or in a combination
of the two. A software module can reside in RAM memory,
flash memory, ROM memory, EPROM memory, EEPROM
memory, registers, hard disk, a removable disk, a CD-ROM,
or any other form of a non-transitory computer-readable stor-
age medium. An exemplary storage medium can be coupled
to the processor device such that the processor device can read
information from, and write information to, the storage
medium. In the alternative, the storage medium can be inte-
gral to the processor device. The processor device and the
storage medium can reside in an ASIC. The ASIC can reside
in a user terminal. In the alternative, the processor device and
the storage medium can reside as discrete components in a
user terminal.

Conditional language used herein, such as, among others,
“can,” “could,” “might,” “may,” “e.g.,” and the like, unless
specifically stated otherwise, or otherwise understood within
the context as used, is generally intended to convey that
certain embodiments include, while other embodiments do
not include, certain features, elements and/or steps. Thus,
such conditional language is not generally intended to imply
that features, elements and/or steps are in any way required
for one or more embodiments or that one or more embodi-
ments necessarily include logic for deciding, with or without
other input or prompting, whether these features, elements
and/or steps are included or are to be performed in any par-
ticular embodiment. The terms “comprising,” “including,”
“having,” and the like are synonymous and are used inclu-
sively, in an open-ended fashion, and do not exclude addi-
tional elements, features, acts, operations, and so forth. Also,
the term “or” is used in its inclusive sense (and not in its
exclusive sense) so that when used, for example, to connecta
list of elements, the term “or” means one, some, or all of the
elements in the list.

Disjunctive language such as the phrase “at least one of X,
Y, Z,” unless specifically stated otherwise, is otherwise under-
stood with the context as used in general to present that an
item, term, etc., may be either X, Y, or Z, or any combination

US 9,400,955 B2

13

thereof (e.g., X, Y, and/or 7). Thus, such disjunctive language
is not generally intended to, and should not, imply that certain
embodiments require at least one of X, at least one of'Y, or at
least one of Z to each be present.

While the above detailed description has shown, described,
and pointed out novel features as applied to various embodi-
ments, it can be understood that various omissions, substitu-
tions, and changes in the form and details of the devices or
algorithms illustrated can be made without departing from the
spirit of the disclosure. As can be recognized, certain embodi-
ments described herein can be embodied within a form that
does not provide all of the features and benefits set forth
herein, as some features can be used or practiced separately
from others. The scope of certain embodiments disclosed
herein is indicated by the appended claims rather than by the
foregoing description. All changes which come within the
meaning and range of equivalency of the claims are to be
embraced within their scope.

What is claimed is:

1. A computer-implemented method comprising:

under control of one or more computing devices configured

with specific computer-executable instructions,
obtaining data defining an artificial neural network com-
prising a matrix, the matrix representing weights
between a first layer and a second layer of the artificial
neural network;
decomposing the matrix using singular value decompo-
sition into a first component matrix, a second compo-
nent matrix, and a third component matrix;
approximating the matrix as a product of first and second
low-rank matrices using a portion of the first compo-
nent matrix, a portion of the second component
matrix, a portion of the third component matrix, and a
rotation matrix,
wherein a rank of'the first low-rank matrix is less than
a rank of the matrix and a rank of the second low-
rank matrix is less than the rank of the matrix,
wherein the first low-rank matrix corresponds to a
product of the portion of the first component
matrix, a square root of the portion of the second
component matrix, and the rotation matrix, and
wherein the second low-rank matrix corresponds to a
product of a transpose of the rotation matrix, the
square root of a portion of the second component
matrix, and a portion of the third component
matrix;
inserting a third layer between the first and second layers
of the artificial neural network wherein the first low-
rank matrix represents weights between the first and
third layers and the second low-rank matrix repre-
sents weights between the third and second layers;
and
subsequently, retraining the artificial neural network for
use as a speech recognition model.

2. The computer-implemented method of claim 1, further
comprising approximating a second matrix of the artificial
neural network as a second approximation of low-rank matri-
ces using the rotation matrix.

3. The computer-implemented method of claim 1, wherein
the second component matrix comprises a diagonal matrix
comprising positive numbers on a diagonal, and wherein the
positive numbers are sorted in descending order.

4. The computer-implemented method of claim 1, further
comprising performing automatic speech recognition on fea-
tures extracted from audio data of an utterance, wherein out-
put of the artificial neural network comprises an acoustic
score.

10

15

20

25

30

35

40

45

50

55

60

65

14

5. The computer-implemented method of claim 1, wherein
the rotation matrix is randomly generated.

6. A system comprising:

a computer-readable memory storing executable instruc-

tions; and

one or more processors in communication with the com-

puter-readable memory, wherein the one or more pro-

cessors are programmed by the executable instructions

to at least:

obtain data defining a neural network, the data compris-
ing a first matrix representing weights between a first
layer of the neural network and a second layer of the
neural network;

generate a second matrix based at least in part on a
rotation matrix and singular value decomposition
component matrices of the first matrix, wherein the
rotation matrix is separate from the singular value
decomposition component matrices; and

insert a third layer between the first and second layers of
the neural network, wherein the second matrix repre-
sents weights between the first and third layers, and
wherein a third matrix represents weights between the
third and second layers.

7. The system of claim 6, wherein the one or more proces-
sors are further programmed to retrain the neural network
after the third layer has been inserted into the neural network.

8. The system of claim 7, wherein the one or more proces-
sors are further programmed to determine a learning rate for
the retraining based at least partly on the third layer.

9. The system of claim 6, wherein the first layer comprises
a hidden layer of the neural network and wherein the second
layer comprises an output layer of the neural network.

10. The system of claim 6, wherein the one or more pro-
cessors are further programmed to insert a fourth layer into
the neural network using the rotation matrix.

11. The system of claim 6, wherein the rotation matrix
reduces the dynamic range of the first and second matrices
matrix with respect to the first matrix.

12. The system of claim 6, wherein the one or more pro-
cessors are further programmed to decompose the first matrix
into the singular value decomposition component matrices,
wherein the singular value decomposition matrices comprise
a first component matrix, a second component matrix, and a
third component matrix, and wherein the second matrix cor-
responds to a product of a portion of the first component
matrix, a square root of a portion of the second component
matrix, and the rotation matrix.

13. The system of claim 12, wherein the second component
matrix comprises a diagonal matrix comprising positive num-
bers on a diagonal, and wherein the positive numbers are
sorted in descending order.

14. The system of claim 6, wherein the one or more pro-
cessors are further programmed to add a bias vector to the first
second matrix.

15. The system of claim 6, wherein the one or more pro-
cessors are further programmed to provide the neural network
to an automatic speech recognition service, wherein the neu-
ral network is configured to receive features extracted from
audio data of an utterance as input.

16. One or more non-transitory computer readable media
comprising executable code that, when executed, cause one
or more computing devices to perform a process comprising:

obtaining data defining a neural network, the data compris-

ing a first matrix representing weights between a first
layer of the neural network and a second layer of the
neural network;

US 9,400,955 B2

15

generating a second matrix based at least in part on a
rotation matrix and singular value decomposition com-
ponent matrices of the first matrix, wherein the rotation
matrix is separate from the singular value decomposi-
tion component matrices; and

inserting a third layer between the first and second layer of
the neural network, wherein the second matrix repre-
sents weights between the first and third layers, and
wherein a third matrix represents weights between the
third and second layers.

17. The one or more non-transitory computer readable
media of claim 16, the process further comprising retraining
the neural network after the third layer has been inserted into
the neural network.

18. The one or more non-transitory computer readable
media of claim 17, the process further comprising determin-
ing alearning rate for the retraining based at least partly on the
third layer.

19. The one or more non-transitory computer readable
media of claim 16, wherein the first layer comprises a hidden
layer of the neural network and wherein the second layer
comprises an output layer of the neural network.

20. The one or more non-transitory computer readable
media of claim 16, the process further comprising inserting a
fourth layer into the neural network using the rotation matrix.

21. The one or more non-transitory computer readable
media of claim 16, wherein the rotation matrix reduces the
dynamic range of the second matrix with respect to the first
matrix.

22. The one or more non-transitory computer readable
media of claim 16, the process further comprising decompos-
ing the first matrix into the singular value decomposition
component matrices, wherein the singular value decomposi-

10

20

25

16

tion matrices comprise a first component matrix, a second
component matrix, and a third component matrix, and
wherein the second matrix corresponds to a product of a
portion of the first component matrix, a square root of a
portion of the second component matrix, and the rotation
matrix.

23. The one or more non-transitory computer readable
media of claim 22, wherein the second component matrix
comprises a diagonal matrix comprising positive numbers on
a diagonal, and wherein the positive numbers are sorted in
descending order.

24. The one or more non-transitory computer readable
media of claim 16, the process further comprising adding a
bias vector to the second matrix.

25. The one or more non-transitory computer readable
media of claim 16, the process further comprising providing
the neural network to an automatic speech recognition ser-
vice, wherein the neural network is configured to receive
features extracted from audio data of an utterance as input.

26. The one or more non-transitory computer readable
media of claim 16, wherein the second matrix and the third
matrix comprise numbers stored in fixed point.

27. The system of claim 12, wherein the third matrix cor-
responds to a product of the transpose of the rotation matrix,
the square root of the portion of the second component
matrix, and a portion of the third component matrix.

28. The one or more non-transitory computer readable
media of claim 22, wherein the third matrix corresponds to a
product of the transpose of the rotation matrix, the square root
of'the portion of the second component matrix, and a portion
of' the third component matrix.

#* #* #* #* #*

